Bernstein flows for flexible posteriors in variational Bayes

Author:

Dürr OliverORCID,Hörtling Stefan,Dold Danil,Kovylov Ivonne,Sick Beate

Abstract

AbstractBlack-box variational inference (BBVI) is a technique to approximate the posterior of Bayesian models by optimization. Similar to MCMC, the user only needs to specify the model; then, the inference procedure is done automatically. In contrast to MCMC, BBVI scales to many observations, is faster for some applications, and can take advantage of highly optimized deep learning frameworks since it can be formulated as a minimization task. In the case of complex posteriors, however, other state-of-the-art BBVI approaches often yield unsatisfactory posterior approximations. This paper presents Bernstein flow variational inference (BF-VI), a robust and easy-to-use method flexible enough to approximate complex multivariate posteriors. BF-VI combines ideas from normalizing flows and Bernstein polynomial-based transformation models. In benchmark experiments, we compare BF-VI solutions with exact posteriors, MCMC solutions, and state-of-the-art BBVI methods, including normalizing flow-based BBVI. We show for low-dimensional models that BF-VI accurately approximates the true posterior; in higher-dimensional models, BF-VI compares favorably against other BBVI methods. Further, using BF-VI, we develop a Bayesian model for the semi-structured melanoma challenge data, combining a CNN model part for image data with an interpretable model part for tabular data, and demonstrate, for the first time, the use of BBVI in semi-structured models.

Funder

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

Novartis Stiftung für Medizinisch-Biologische Forschung

Hochschule Konstanz Technik, Wirtschaft und Gestaltung (HTWG)

Publisher

Springer Science and Business Media LLC

Reference39 articles.

1. Agrawal, A., Sheldon, D.R., Domke, J.: Advances in black-box VI: normalizing flows, importance weighting, and optimization. Adv. Neural Inf. Process. Syst. 33, 17358–17369 (2020)

2. Baumann, P.F.M., Hothorn, T., Rügamer, D.: Deep conditional transformation models. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 3–18. Springer, Cham (2021)

3. Bernšteın, S.: Démonstration du théoreme de weierstrass fondée sur le calcul des probabilities. Commun. Soc. Math. Kharkov 13, 1–2 (1912)

4. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P.A., Horsfall, P., Goodman, N.D.: Pyro: deep universal probabilistic programming. J. Mach. Learn. Res. 20, 28–1286 (2019)

5. Blei, D., Ranganath, R., Mohamed, S.: Variational inference: foundations and modern methods. In: NIPS tutorial (2016)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial special issue: Bridging the gap between AI and Statistics;AStA Advances in Statistical Analysis;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3