1. Agrawal, A., Sheldon, D.R., Domke, J.: Advances in black-box VI: normalizing flows, importance weighting, and optimization. Adv. Neural Inf. Process. Syst. 33, 17358–17369 (2020)
2. Baumann, P.F.M., Hothorn, T., Rügamer, D.: Deep conditional transformation models. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 3–18. Springer, Cham (2021)
3. Bernšteın, S.: Démonstration du théoreme de weierstrass fondée sur le calcul des probabilities. Commun. Soc. Math. Kharkov 13, 1–2 (1912)
4. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P.A., Horsfall, P., Goodman, N.D.: Pyro: deep universal probabilistic programming. J. Mach. Learn. Res. 20, 28–1286 (2019)
5. Blei, D., Ranganath, R., Mohamed, S.: Variational inference: foundations and modern methods. In: NIPS tutorial (2016)