Solar Cycle 25 Prediction Using an Optimized Long Short-Term Memory Mode with F10.7

Author:

Zhu Hongbing,Zhu Wenwei,He Mu

Abstract

AbstractIn this paper, an optimized long short-term memory (LSTM) model is proposed to deal with the smoothed monthly $F_{10.7}$ F 10.7 data, aiming to predict the peak amplitude of $F_{10.7}$ F 10.7 and the occurring time for Solar Cycle 25 (SC-25) to obtain the maximum amplitude of sunspot number (SSN) and the reaching time. The “re-prediction” process in the model uses the latest prediction results obtained from the previous prediction as the input for the next prediction calculation. The prediction errors between the predicted and observed peak amplitude of $F_{10.7}$ F 10.7 for SC-23 and SC-24 are 2.87% and 1.09%, respectively. The predicted peak amplitude of $F_{10.7}$ F 10.7 for SC-25 is 156.3, and the maximum value of SSN is calculated as 147.9, which implies that SC-25 will be stronger than SC-24. SC-25 will reach its peak in July 2025.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3