Extreme Space-Weather Events and the Solar Cycle

Author:

Owens Mathew J.ORCID,Lockwood MikeORCID,Barnard Luke A.ORCID,Scott Chris J.ORCID,Haines CarlORCID,Macneil AllanORCID

Abstract

AbstractSpace weather has long been known to approximately follow the solar cycle, with geomagnetic storms occurring more frequently at solar maximum than solar minimum. There is much debate, however, about whether the most hazardous events follow the same pattern. Extreme events – by definition – occur infrequently, and thus establishing their occurrence behaviour is difficult even with very long space-weather records. Here we use the 150-year $aa_{H}$ a a H record of global geomagnetic activity with a number of probabilistic models of geomagnetic-storm occurrence to test a range of hypotheses. We find that storms of all magnitudes occur more frequently during an active phase, centred on solar maximum, than during the quiet phase around solar minimum. We also show that the available observations are consistent with the most extreme events occurring more frequently during large solar cycles than small cycles. Finally, we report on the difference in extreme-event occurrence during odd- and even-numbered solar cycles, with events clustering earlier in even cycles and later in odd cycles. Despite the relatively few events available for study, we demonstrate that this is inconsistent with random occurrence. We interpret this finding in terms of the overlying coronal magnetic field and enhanced magnetic-field strengths in the heliosphere, which act to increase the geoeffectiveness of sheath regions ahead of extreme coronal mass ejections. Putting the three “rules” together allows the probability of extreme event occurrence for Solar Cycle 25 to be estimated, if the magnitude and length of the coming cycle can be predicted. This highlights both the feasibility and importance of solar-cycle prediction for planning and scheduling of activities and systems that are affected by extreme space weather.

Funder

Science and Technology Facilities Council

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference51 articles.

1. Baker, D.N., Li, X., Pulkkinen, A., Ngwira, C.M., Mays, M.L., Galvin, A.B., Simunac, K.D.C.: 2013, A major solar eruptive event in July 2012: defining extreme space weather scenarios. Space Weather 11, 585. DOI.

2. Bothmer, V., Rust, D.M.: 1997, The field configuration of magnetic clouds and the solar cycle. In: Crooker, Joselyn, Feynmann (eds.) Geophys. Mono. Ser. 99, Am. Geophys. Union, Washington. ISBN 978-1-118-66437-7.

3. Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R.B., Jackson, D.: 2013, Extreme Space Weather: Impacts on Engineered Systems and Infrastructure, Royal Acad. Engin., London. ISBN 978-1-903496-95-0.

4. Chapman, S.C., Horne, R.B., Watkins, N.W.: 2020, Using the index over the last 14 solar cycles to characterize extreme geomagnetic activity. Geophys. Res. Lett. 47, e2019GL086524. DOI.

5. Chapman, S.C., McIntosh, S.W., Leamon, R.J., Watkins, N.W.: 2020, Quantifying the solar cycle modulation of extreme space weather. Geophys. Res. Lett. 47, e2020GL087795. DOI.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3