The Sun’s Large-Scale Flows I: Measurements of Differential Rotation & Torsional Oscillation

Author:

Mahajan Sushant S.ORCID,Upton Lisa A.ORCID,Antia H. M.ORCID,Basu SarbaniORCID,DeRosa Marc L.ORCID,Hess Webber Shea A.ORCID,Todd Hoeksema J.ORCID,Jain KiranORCID,Komm Rudolf W.ORCID,Larson TimORCID,Nagovitsyn Yury A.ORCID,Pevtsov Alexei A.ORCID,Roudier ThierryORCID,Tripathy Sushanta C.ORCID,Ulrich Roger K.ORCID,Zhao JunweiORCID

Abstract

AbstractWe have developed a comprehensive catalog of the variable differential rotation measured near the solar photosphere. This catalog includes measurements of these flows obtained using several techniques: direct Doppler, granule tracking, magnetic pattern tracking, global helioseismology, as well as both time-distance and ring-diagram methods of local helioseismology. We highlight historical differential rotation measurements to provide context, and thereafter provide a detailed comparison of the MDI-HMI-GONG-Mt. Wilson overlap period (April 2010 – Jan 2011) and investigate the differences between velocities obtained from different techniques and attempt to explain discrepancies. A comparison of the rotation rate obtained by magnetic pattern tracking with the rotation rates obtained using local and global helioseismic techniques shows that magnetic pattern tracking measurements correspond to helioseismic flows located at a depth of 25 to 28 Mm. In addition, we show the torsional oscillation from Sunspot Cycles 23 and 24 and discuss properties that are consistent across measurement techniques. We find that acceleration derived from torsional oscillation is a better indicator of long-term trends in torsional oscillation compared to the residual velocity magnitude. Finally, this analysis will pave the way toward understanding systematic effects associated with various flow measurement techniques and enable more accurate determination of the global patterns of flows and their regular and irregular variations.

Funder

COFFIES Phase I Grant

COFFIES PHASE II GRANT

NASA HMI Contract

NASA LWS

NASA

NASA Contract

Ministry of Science and Higher Education of the Russian Federation

NATIONAL SCIENCE FOUNDATION

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3