Delving into the Historical Ca ii K Archive from the Kodaikanal Observatory: The Potential of the Most Recent Digitized Series

Author:

Chatzistergos TheodosiosORCID,Ermolli IlariaORCID,Solanki Sami K.ORCID,Krivova Natalie A.ORCID,Banerjee DipankarORCID,Jha Bibhuti K.ORCID,Chatterjee SubhamoyORCID

Abstract

Abstract Full-disc Ca ii K photographic observations of the Sun carry direct information as regards the evolution of solar-plage regions for more than a century and are therefore a unique dataset for solar-activity studies. For a long time Ca ii K observations were barely explored, but recent digitizations of multiple archives have allowed their extensive analysis. However, various studies have reported diverse results partly due to the insufficient quality of the digitized data. Furthermore, inhomogeneities have been identified within the individual archives, which, at least partly, could be due to the digitization. As a result, some of the archives, e.g. that from the Kodaikanal observatory, were re-digitized. The results obtained by different authors who analyzed the data from the new digitization of the Kodaikanal archive differ from each other and from those derived from the old digitization. Since the data were processed and analyzed using different techniques, it is not clear, however, whether the differences are due to the digitization or the processing of the data. To understand the reasons for such discrepancies, we analyze here the data from the two most recent digitizations of this archive. We use the same techniques to consistently process the images from both archives and to derive the plage areas from them. Some issues have been identified in both digitizations, implying that they are intrinsic characteristics of the data. Moreover, errors in timing of the observations plague both digitizations. Overall, the most recent 16-bit digitization offers an improvement over the earlier 8-bit one. It also includes considerably more data and should be preferred.

Funder

H2020

National Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3