Signatures of Coronal Loop Opening via Interchange Reconnection in the Slow Solar Wind at 1 AU

Author:

Owens MathewORCID,Lockwood MikeORCID,Macneil AllanORCID,Stansby DavidORCID

Abstract

AbstractThe opening of closed magnetic loops via reconnection with open solar flux, so called “interchange reconnection”, is invoked in a number of models of slow solar wind release. In the heliosphere, this is expected to result in local switchbacks or inversions in heliospheric magnetic flux (HMF). When observed at 1 AU, inverted HMF has previously been shown to exhibit high ion charge states, suggestive of hot coronal loops, and to map to the locations of coronal magnetic separatrices. However, simulations show that inverted HMF produced directly by reconnection in the low corona is unlikely to survive to 1 AU without the amplification by solar wind speed shear. By considering the surrounding solar wind, we show that inverted HMF is preferably associated with regions of solar wind shear at 1 AU. Compared with the surrounding solar wind, inverted HMF intervals have lower magnetic field intensity and show intermediate speed and density values between the faster, more tenuous wind ahead and the slower, denser wind behind. There is no coherent signature in iron charge states, but oxygen and carbon charge states within the inverted HMF are in agreement with the higher values in the slow wind behind. Conversely, the iron-to-oxygen abundance ratio is in better agreement with the lower values in the solar wind ahead, while the alpha-to-proton abundance ratio shows no variation. One possible explanation for these observations is that the interchange reconnection (and subsequent solar wind shear) that is responsible for generation of inverted HMF involves very small, quiet-Sun loops of approximately photospheric composition, which are impulsively heated in the low corona, rather than large-scale active region loops with enhanced first-ionisation potential elements. Whether signatures of such small loops could be detected in situ at 1 AU still remains to be determined.

Funder

Science and Technology Facilities Council

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3