A Semi-Automatic Method to Measure the Rotation of Sunspots

Author:

Brown DanielORCID,Walker Andrew

Abstract

AbstractSunspots have been observed to undergo rotation about their umbral centre. This is typically a slow rotation, with even the fastest sunspot rotations only reaching angular velocities of a few degrees per hour. This rotation may inject magnetic energy into the Sun’s atmosphere, which can be stored in the coronal magnetic field and later released in eruptive events such as solar flares and coronal mass ejections. To usefully investigate rotating sunspots long periods of data need to be analysed, often of the order of several days, to build up a bulk rotation profile for the sunspot over time. This article outlines a semi-automated approach for analysing series of solar continuum data to extract the rotation profile of a sunspot as it transits across the solar disc. Moving towards an automated approach is vital for generating large, unbiased statistical samples of rotating sunspots in order to understand their contribution to solar activity. Existing methods typically focus on sunspots near disc centre for short time periods, neglecting much of the rotation history of the sunspot. The method is tested on six sunspots observed in continuum data from the Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO). These have been chosen to test the method for a range of different types of sunspots, including well-behaved sunspots, shape-changing sunspots, fast rotators, non-rotators, and interacting sunspots. The rotation profiles are compared by eye to animations of the sunspot from the data and are in acceptable visual agreement with the observed bulk rotation of the sunspot for all of the cases, except for the one which contains two sunspots in a shared penumbra. The method is also tested against sunspot rotations in active region (AR) 11158 that have been reported in the literature. While the results compare to some degree, the method outlined in this article reports lower rotations than those reported in the literature. Some of this discrepancy can be attributed to selection bias by the approaches in the literature, where only features that undergo larger rotation are tracked in sunspots that exhibit non-uniform rotation. The method also provides uncertainties on the calculated rotation profile which can be broken down to allow the principal sources of error to be identified. For the test sunspots in this article, the dominant source of uncertainty is the resolution of the SDO/HMI instrument.

Funder

Science and Technology Facilities Council

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3