Detecting and Characterising Small-Scale Brightenings in Solar Imaging Data

Author:

Humphries Llŷr DafyddORCID,Morgan Huw,Kuridze David

Abstract

AbstractObservations of small-scale brightenings in the low solar atmosphere can provide valuable constraints on possible heating and heat transport mechanisms. We present a method for the detection and analysis of brightenings, and demonstrate its application to time-series imagery of the Interface Region Imaging Spectrograph (IRIS) in the extreme ultraviolet (EUV). The method is based on spatio-temporal band-pass filtering, adaptive thresholding and centroid tracking, and records an event’s spatial position, duration, total brightness and maximum brightness. Spatial area, brightness, and position are also recorded as functions of time throughout the event’s lifetime. Detected brightenings can fragment, or merge, over time – thus the number of distinct regions constituting a brightening event is recorded over time, and the maximum number of regions recorded as $N_{\mathit{frag}}$ N frag , which is a simple measure of an event’s coherence or spatial complexity. A test is made on a synthetic datacube composed of a static background based on IRIS data, Poisson noise and $\approx 10^{4}$ 10 4 randomly-distributed, moving, small-scale Gaussian brightenings. Maximum brightness, total brightness, area, and duration follow power-law distributions, and the results show the range over which the method can successfully extract information. The test shows that the recorded maximum brightness of an event is a reliable measure for the brightest and most accurately detected events, with an error of 6%. Event area, duration and speed are generally underestimated by around 15% and have an uncertainty of 20–30%. The total brightness is underestimated by 30%, and has an uncertainty of 30%. Applying this detection method to real IRIS quiet-sun data spanning 19 minutes over a $54.40''\times 55.23''$ 54.40 × 55.23 field of view (FOV) yields 2997 detections, 1340 of these detections either remain un-fragmented or fragment to two distinct regions at least once during their lifetime ($N_{\mathit{frag}}\le 2$ N frag 2 ), equating to an event density of $3.96\times 10^{-4}$ 3.96 × 10 4 arcsec−2 s−1. The method will be used for a future large-scale statistical analysis of several quiet-sun (QS) data sets from IRIS, other EUV imagers, and other types of data including H$\alpha $ α and visible photospheric imagery.

Funder

Science and Technology Facilities Council

Georgian Shota Rustaveli National Science Foundation

Coleg Cymraeg Cenedlaethol

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3