Hybrid Simulation of Solar-Wind-Like Turbulence

Author:

Roberts D. AaronORCID,Ofman Leon

Abstract

Abstract We present 2.5D hybrid simulations of the spectral and thermodynamic evolution of an initial state of magnetic field and plasma variables that in many ways represents solar wind fluctuations. In accordance with Helios near-Sun high-speed stream observations, we start with Alfvénic fluctuations along a mean magnetic field in which the fluctuations in the magnitude of the magnetic field are minimized. Since fluctuations in the radial flow speed are the dominant free energy in the observed fluctuations, we include a field-aligned $v_{\|}(k_{\perp })$v(k) with an $k^{ -1}$k1 spectrum of velocity fluctuations to drive the turbulent evolution. The flow rapidly distorts the Alfvénic fluctuations, yielding spectra (determined by spacecraft-like cuts) transverse to the field that become comparable to the $k_{\|}$k fluctuations, as in spacecraft observations. The initial near constancy of the magnetic field is lost during the evolution; we show this also takes place observationally. We find some evolution in the anisotropy of the thermal fluctuations, consistent with expectations based on Helios data. We present 2D spectra of the fluctuations, showing the evolution of the power spectrum and cross-helicity. Despite simplifying assumptions, many aspects of simulations and observations agree. The greatly faster evolution in the simulations is at least in part due to the small scales being simulated, but also to the non-equilibrium initial conditions and the relatively low overall Alfvénicity of the initial fluctuations.

Funder

NASA

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3