A Statistical Comparison of EUV Brightenings Observed by SO/EUI with Simulated Brightenings in Nonpotential Simulations

Author:

Barczynski KrzysztofORCID,Meyer Karen A.ORCID,Harra Louise K.,Mackay Duncan H.,Auchère Frédéric,Berghmans David

Abstract

AbstractThe High Resolution Imager (HRIEUV) telescope of the Extreme Ultraviolet Imager (EUI) instrument onboard Solar Orbiter has observed EUV brightenings, so-called campfires, as fine-scale structures at coronal temperatures. The goal of this paper is to compare the basic geometrical (size, orientation) and physical (intensity, lifetime) properties of the EUV brightenings with regions of energy dissipation in a nonpotential coronal magnetic-field simulation. In the simulation, HMI line-of-sight magnetograms are used as input to drive the evolution of solar coronal magnetic fields and energy dissipation. We applied an automatic EUV-brightening detection method to EUV images obtained on 30 May 2020 by the HRIEUV telescope. We applied the same detection method to the simulated energy dissipation maps from the nonpotential simulation to detect simulated brightenings. We detected EUV brightenings with a density of $1.41 \times 10^{-3}$ 1.41 × 10 3 brightenings/Mm2 in the EUI observations and simulated brightenings between $2.76\times 10^{-2}$ 2.76 × 10 2 $4.14\times 10^{-2}$ 4.14 × 10 2 brightenings/Mm2 in the simulation, for the same time range. Although significantly more brightenings were produced in the simulations, the results show similar distributions of the key geometrical and physical properties of the observed and simulated brightenings. We conclude that the nonpotential simulation can successfully reproduce statistically the characteristic properties of the EUV brightenings (typically with more than 85% similarity); only the duration of the events is significantly different between observations and simulation. Further investigations based on high-cadence and high-resolution magnetograms from Solar Orbiter are under consideration to improve the agreement between observation and simulation.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Science and Technology Facilities Council

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3