Overview of the Solar Radiation and Climate Experiment (SORCE) Seventeen-Year Mission

Author:

Woods Thomas N.ORCID,Harder Jerald W.,Kopp Greg,McCabe DebraORCID,Rottman Gary,Ryan SeanORCID,Snow MartinORCID

Abstract

AbstractThe Solar Radiation and Climate Experiment (SORCE) was a NASA mission that operated from 2003 to 2020 to provide key climate-monitoring measurements of total solar irradiance (TSI) and solar spectral irradiance (SSI). Three important accomplishments of the SORCE mission are i) the continuation of the 42-year-long TSI climate data record, ii) the continuation of the ultraviolet SSI record, and iii) the initiation of the near-ultraviolet, visible, and near-infrared SSI records. All of the SORCE instruments functioned well over the 17-year mission, which far exceeded its five-year prime mission goal. The SORCE spacecraft, having mostly redundant subsystems, was also robust over the mission. The end of the SORCE mission was a planned passivation of the spacecraft following a successful two-year overlap with the NASA Total and Spectral Solar Irradiance Sensor (TSIS) mission, which continues the TSI and SSI climate records. There were a couple of instrument anomalies and a few spacecraft anomalies during SORCE’s long mission, but operational changes and updates to flight software enabled SORCE to remain productive to the end of its mission. The most challenging of the anomalies was the degradation of the battery capacity that began to impact operations in 2009 and was the cause for the largest SORCE data gap (August 2013 – February 2014). An overview of the SORCE mission is provided with a couple of science highlights and a discussion of flight anomalies that impacted the solar observations. Companion articles about the SORCE instruments and their final science data-processing algorithms provide additional details about the instrument measurements over the duration of the mission.

Funder

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3