The major protein of bull seminal plasma: Biosynthesis and biological function

Author:

Scheit Karl Heinz1,Kemme Michael1,Aumüller Gerhard2,Seitz Jürgen2,Hagendorff Gerd1,Zimmer Michael1

Affiliation:

1. Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany

2. Institut für Anatomie und Zellbiologie, Universität Marburg, Marburg, Germany

Abstract

We isolated the major protein of apparent Mr of 15,000–16,000 from seminal plasma as well as from seminal veiscle secretion of bull and proved by amino acid analysis and tryptic peptide mapping that the two proteins were identical. An antiserum against this major protein was employed to quantitate and identify the major protein in seminal plasma as well as seminal vesicle secretion. The antiserum did not cross-react with proteins from bovine or human plasma or follicular fluid respectively. Cell-free translation of poly(A)RNA from seminal vesicle tissue and immunoprecipitation yielded one major species with apparent Mr of 18,000. Using the anti-major protein antiserum, this major species was specifically immuno absorbed. Cloning and sequencing of a major protein-specific cDNA led to the identification of clone pMP17, encoding a precursor of the major protein of 128 amino acid residues. We proved that the major protein is identical to protein PDC 109 (Esch et al., Biochem. Biophys. Res. Comm.113:861–867, 1983). The seminal vesicles synthesize major protein in an androgen-dependent fashion. In addition to intraluminal secretion of the vas deferens, ampullary spermatozoa revealed an intense immunoreaction which was restricted to the neck region of the sperm head and the middle piece, while the principal piece of the tail as well as the sperm head were devoid of immunoreactive material. Epididymal epithelium (as well as calf seminal vesicle epithelium) showed no immunoreactivity with major protein antiserum. Immunoelectron microscopy demonstrated that only spermatozoa devoid of a plasma membrane around the middle piece were able to bind the antiserum against major protein. After removal of the plasma membrane from epididymal spermatozoa, binding of major protein to subplasmalemmal binding sites was visualised using gold-labeled MP. Transblotting with gold-labeled MP demonstrated a protein of about 66 kDa which appears to represent the major protein-receptor. Binding of major protein to the receptor (after loss of the plasma membrane in the mid-piece region of the spermatozoa after contact with secretions from seminal vesicles) is interpreted as a phyisological process presumably related to the onset of sperm motility.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3