Abstract
AbstractCommon linear polymers are known to undergo phase changes at the glass-transition temperature (Tg) and the melting point (Tm). In recent years, it has also been shown that molecules with long aliphatic side chains can give rise to a backbone-independent melting phenomenon, known as nanophase separation. This effect describes the self-assembly — independent of the polymer backbone — of alkyl side chains into semi-crystalline nanostructures. This work presents optimized, gram scale synthesis routes for dodecyl and octadecyl acrylamide and their respective homopolymers. Differential scanning calorimetry (DSC) experiments detected a broad endothermal signal for poly(n-dodecyl acrylamide) at − 29 °C and a narrower, more intense signal for poly(n-octadecyl acrylamide) at 34 °C. These signals indicate the nanophase separation TM of the alkyl side chains. We undertook the first temperature-controlled infrared spectroscopy investigations of these materials revealing a clear hypsochromic shift of the C–H stretching signals above TM and the amide I signal shifts that occurred only above and below Tg. These results provide further evidence, that the side chains act independently of the polymer backbone and show that infrared spectroscopy is a powerful tool for monitoring conformational changes in polymer side chains.
Graphical abstract
Funder
Johannes Kepler University Linz
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献