On vanishing sums of roots of unity in polynomial calculus and sum-of-squares

Author:

Bonacina IlarioORCID,Galesi NicolaORCID,Lauria MassimoORCID

Abstract

AbstractWe introduce a novel take on sum-of-squares that is able to reason with complex numbers and still make use of polynomial inequalities. This proof system might be of independent interest since it allows to represent multivalued domains both with Boolean and Fourier encoding. We show degree and size lower bounds in this system for a natural generalization of knapsack: the vanishing sums of roots of unity. These lower bounds naturally apply to polynomial calculus as-well.

Funder

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,General Mathematics,Theoretical Computer Science

Reference43 articles.

1. Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch & Iddo Tzameret (2020). Semi-Algebraic Proofs, IPS Lower Bounds, and the τ -Conjecture: Can a Natural Number Be Negative? In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC’20), 54–67.

2. Albert Atserias & Tuomas Hakoniemi (2019). Size-Degree Trade- Offs for Sums-of-Squares and Positivstellensatz Proofs. In Proceedings of the 34th Computational Complexity Conference (CCC’19), volume 137 of LIPIcs, 24:1–24:20.

3. Albert Atserias & Joanna Ochremiak (2018). Proof Complexity Meets Algebra. ACM Trans. Comput. Logic 20(1).

4. Roberto J Bayardo Jr & Robert Schrag (1997). Using CSP look-back techniques to solve real-world SAT instances. In Proceedings of the 14th National Conference on Artificial Intelligence and 9th Conference on Innovative Applications of Artificial Intelligence (AAAI’97/IAAI’97), 203–208.

5. Christoph Berkholz (2018). The Relation between Polynomial Calculus, Sherali-Adams, and Sum-of-Squares Proofs. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer Science (STACS’18), volume 96, 11:1–11:14.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3