Author:
Impagliazzo Russell,Kabanets Valentine
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computational Theory and Mathematics,General Mathematics,Theoretical Computer Science
Reference59 articles.
1. A. Ambainis, A.M. Childs, B. Reichardt, R. Špalek & S. Zhang (2007). Any And-Or formula of size $${n}$$ n can be evaluated in time $${n^{1/2+o(1)}}$$ n 1 / 2 + o ( 1 ) on a quantum computer. In Proceedings of the Forty-Eighth Annual IEEE Symposium on Foundations of Computer Science, 363–372.
2. A.E. Andreev (1987). On a method of obtaining more than quadratic effective lower bounds for the complexity of $${\pi}$$ π -schemes. Vestnik Moskovskogo Universiteta. Matematika 42(1), 70–73. English translation in Moscow University Mathematics Bulletin.
3. Babai L., Fortnow L., Nisan N., Wigderson A. (1993) BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity 3: 307–318
4. Beals R., Buhrman H., Cleve R., Mosca M., de Wolf R. (2001) Quantum lower bounds by polynomials. Journal of the Association for Computing Machinery 48(4): 778–797
5. P. Beame, R. Impagliazzo & S. Srinivasan (2012). Approximating AC 0 by Small Height Decision Trees and a Deterministic Algorithm for #AC 0SAT. In Proceedings of the Twenty-Seventh Annual IEEE Conference on Computational Complexity, 117–125.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fooling Constant-Depth Threshold Circuits (Extended Abstract);2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS);2022-02
2. Quantified Derandomization: How to Find Water in the Ocean;Foundations and Trends® in Theoretical Computer Science;2022
3. Formula lower bounds via the quantum method;Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing;2017-06-19