Variety Evasive Subspace Families

Author:

Guo Zeyu

Abstract

AbstractWe introduce the problem of constructing explicit variety evasive subspace families. Given a family $$\mathcal{F}$$ F of subvarieties of a projective or affine space, a collection $$\mathcal{H}$$ H of projective or affine $$k$$ k -subspaces is $$(\mathcal{F},\epsilon)$$ ( F , ϵ ) -evasive if for every $$\mathcal{V}\in\mathcal{F}$$ V F , all but at most $$\epsilon$$ ϵ -fraction of $$W\in\mathcal{H}$$ W H intersect every irreducible component of $$\mathcal{V}$$ V with (at most) the expected dimension. The problem of constructing such an explicit subspace family generalizes both deterministic black-box polynomial identity testing (PIT) and the problem of constructing explicit (weak) lossless rank condensers.Using Chow forms, we construct explicit $$k$$ k -subspace families of polynomial size that are evasive for all varieties of bounded degree in a projective or affine $$n$$ n -space. As one application, we obtain a complete derandomization of Noether’s normalization lemma for varieties of low degree in a projective or affine $$n$$ n -space. In another application, we obtain a simple polynomial-time black-box PIT algorithm for depth-4 arithmetic circuits with bounded top fan-in and bottom fan-in that are not in the Sylvester–Gallai configuration, improving and simplifying a result of Gupta (ECCC TR 14-130).As a complement of our explicit construction, we prove a tight lower bound for the size of $$k$$ k -subspace families that are evasive for degree-$$d$$ d varieties in a projective $$n$$ n -space. When $$n-k=n^{\Omega(1)}$$ n - k = n Ω ( 1 ) , the lower bound is superpolynomial unless $$d$$ d is bounded. The proof uses a dimension counting argument on Chow varieties that parametrize projective subvarieties.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3