Algebraic Global Gadgetry for Surjective Constraint Satisfaction

Author:

Chen Hubie

Abstract

AbstractThe constraint satisfaction problem (CSP) on a finite relational structure B is to decide, given a set of constraints on variables where the relations come from B, whether or not there is an assignment to the variables satisfying all of the constraints; the surjective CSP is the variant where one decides the existence of a surjective satisfying assignment onto the universe of B. We present an algebraic framework for proving hardness results on surjective CSPs; essentially, this framework computes global gadgetry that permits one to present a reduction from a classical CSP to a surjective CSP. We show how to derive a number of hardness results for surjective CSP in this framework, including the hardness of the disconnected cut problem, of the no-rainbow three-coloring problem, and of the surjective CSP on all two-element structures known to be intractable (in this setting). Our framework thus allows us to unify these hardness results and reveal common structure among them; we believe that our hardness proof for the disconnected cut problem is more succinct than the original. In our view, the framework also makes very transparent a way in which classical CSPs can be reduced to surjective CSPs.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3