Are the [6]-coordinated sites in tourmaline in certain cases partially vacant?

Author:

Ertl Andreas

Abstract

AbstractTourmaline has two different [6]-coordinated sites, the Y site and the Z site. Vacancies were reported from both sites. Based on high-quality chemical and single-crystal structural data it usually needs increasing proportions of short-range order configurations Na(Al2)Al6(BO3)3[Si6O18]V(OH)3W(OH) or Na(Al2)Al6(BO3)3[Si6O18]V(OH)3WF in order to produce Y-site vacancies (with being the symbol for a vacant site). Less commonly, the short-range configuration Ca(Al2)Al6(BO3)3[Si5T3+O18]V(OH)3W(OH) could occur in Al-rich tourmalines with a Si deficiency, where T3+  = B, Al. Therefore, tourmalines enriched in cations with charge 2 + (Fe2+, Mn2+, Mg) contain only insignificant Y-site vacancies. Aluminum-rich tourmalines with ≥ 7.0 apfu Altotal that usually contain ≥ 0.2 apfu Li may have significant vacancies at the Y site. However, no more than 12% vacancies (0.36 pfu) at the Y site can be observed in such samples. If no chemical data for Li is available it is proposed to calculate the Li content in such colourless or coloured tourmalines (elbaite, fluor-elbaite, fluor-liddicoatite, rossmanite) for Y = 2.8 apfu or for Y + Z + T = 14.8 apfu, because this calculation should give more accurate results than calculating the Li content as the difference to 3.0 apfu at the Y site. For Fe2+-rich and Mg-bearing tourmalines from the schorl-dravite series with MgO > 1.0 wt% (and only minor amounts of Fe3+, Cr3+ and V3+) the structural formula can still be calculated for Y + Z + T = 15 apfu, because such tourmalines do not appear to contain significant Y-site vacancies. It can further be concluded that the Z site could be only ≤ 1% vacant and therefore such vacancies would be insignificant even in Al-rich tourmaline.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3