Unravelling the phylogenetic and ecological drivers of beak shape variability in cephalopods

Author:

Sánchez-Márquez AntoniORCID,Navarro JoanORCID,Kaliontzopoulou AntigoniORCID,Farré MarcORCID,Taite MoragORCID,Escolar OscarORCID,Villanueva RogerORCID,Allcock A. LouiseORCID,Fernández-Álvarez Fernando Á.ORCID

Abstract

AbstractCephalopod beaks are essential for prey acquisition and fragmentation during feeding. Thus, it is expected that ecological pressures affect cephalopod beak shape. From a practical perspective, these structures are also used to identify gut contents of marine megafauna, such as toothed whales, sharks, seabirds, and large pelagic fishes. Here, we investigated the relative importance of ecological pressures and phylogenetic relatedness in the evolution of beak shape using a wide range of Mediterranean cephalopod species. Phylogenetic analyses based on complete mitogenomes and nuclear ribosomal genes provided a well-supported phylogeny among the 18 included cephalopods. Geometric morphometric and stable isotope methods were implemented to describe interspecific beak shape and trophic niche variability, respectively. Phylogenetic signal was detected in the shape of both parts of the beak (upper and lower). However, lower beak shape was more distinct among closely related species, in line with the empirical notion that lower beak morphology is more useful as an identification tool in cephalopods. Interestingly, no association between beak shape and trophic niche (stable isotope values) was found. These results suggest that the evolution of cephalopod beak shape as quantified here is mainly driven by phylogenetic relationships, while feeding habits play a minor role. Graphical abstract

Funder

Generalitat de Catalunya

Ministerio de Ciencia, Innovación y Universidades

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3