Author:
Patnaik Rakesh Kumar,Lin Yu-Chen,Ho Ming Chih,Yeh J. Andrew
Abstract
Abstract
Purpose
Breath profiling has gained importance in recent years as it is a non-invasive technique to identify biomarkers for various diseases. Breath profiling of abnormal liver function in individuals for identifying potential biomarkers in exhaled breath could be a useful diagnostic tool. The objective of this study was to identify potential biomarkers in exhaled breath that remain stable and consistent during different physiological states, including rest and brief workouts, intending to develop a non-invasive diagnostic tool for detecting abnormal liver function.
Method
Our study employed a gas chromatography and mass-spectrometer quantified dataset for analysis. Machine learning techniques, including feature selection and model training, were used to rank and evaluate potential biomarkers' contributions to the model's performance. Statistical methods were applied to filter significant and consistent biomarkers. The final selected biomarkers were iterated for all possible combinations using machine learning algorithms to determine their accuracy range. Furthermore, classification models were used to evaluate the performance metrics of the biomarkers and compare models.
Result
The final selected biomarkers, including 2-Myristynoyl Pantetheine, Pterin-6 Carboxylic Acid, Methyl Mercaptan, N-Acetyl Cysteine, and Butyric Acid, exhibited stable levels in exhaled breath during different physiological states. They showed high accuracy and precision in detecting abnormal liver function. Our machine learning models achieved an accuracy rate ranging from 0.7 to 0.95 in all conditions, with precision, recall, prediction probability, and a 95% confidence interval ranging from 0.84 to 0.94, using various combinations of these biomarkers.
Conclusion
Our statistical and machine learning analysis identified significant and potential biomarkers that contribute to the detection of abnormal liver function. These biomarkers were consistent across different physiological states of the body in both patient and healthy groups. The use of breath samples and feature selection machine learning methods proved to be an accurate and reliable approach for identifying these biomarkers. Our findings provide valuable insights for future research in this field and can inform the development of non-invasive and cost-effective diagnostic tests for liver disease.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference55 articles.
1. Polaris T, Hcv O. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. 2015;161–76.
2. Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, et al. The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol. 2017;3(12):1683–91.
3. Global hepatitis report. 2017. WHO. https://www.who.int/publications/i/item/global-hepatitis-report-2017.
4. Lavanchy D. The global burden of hepatitis C. Liver Int Off J Int Assoc Study Liver. 2009;29(Suppl 1):74–81.
5. Dragonieri S, Schot R, Mertens BJA, Le Cessie S, Gauw SA, Spanevello A, et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol. 2007;120(4):856–62.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Volatile Organic Gaseous Compound Biomarkers for Gastrointestinal Carcinoma: A Review;2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET);2024-06-07