An evolutionary approach to continuously estimate CPR quality parameters from a wrist-worn inertial sensor

Author:

Lins ChristianORCID,Friedrich Björn,Hein Andreas,Fudickar SebastianORCID

Abstract

AbstractCardiopulmonary resuscitation (CPR) is one of the most critical emergency interventions for sudden cardiac arrest. In this paper, a robust sinusoidal model-fitting method based on a Evolution Strategy inspired algorithm for CPR quality parameters – naming chest compression frequency and depth – as measured by an inertial measurement unit (IMU) attached to the wrist is presented. The proposed approach will allow bystanders to improve CPR as part of a continuous closed-loop support system once integrated into a smartphone or smartwatch application. By evaluating the model’s precision with data recorded by a training mannequin as reference standard, a variance for the compression frequency of $$\pm 2.22$$ ± 2.22 compressions per minute (cpm) has been found for the IMU attached to the wrist. It was found that this previously unconsidered position and thus, the use of smartwatches is a suitable alternative to the typical placement of phones in hand for CPR training.

Funder

Niedersächsische Ministerium für Wissenschaft und Kultur

Hochschule für Angewandte Wissenschaften Hamburg (HAW Hamburg)

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring The Functionality of Technology-Driven CPR Training Methodologies Among Healthcare Practitioners: A Randomized Control Pilot Study;Journal of the Saudi Heart Association;2024-07-03

2. Wearable Inertial and Pressure Sensors-Based Chest Compression Quality Assessment to Improve Accuracy and Robustness;IEEE Sensors Journal;2024-02-01

3. Cardiac Massage Practice Application using Barometer in a Smart Phone and Sealed Bag;Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing;2023-10-08

4. EA-based smartwatch application for training and assistance in cardiopulmonary resuscitation;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3