Real-world treatment response in Japanese patients with cancer using unstructured data from electronic health records

Author:

Araki Kenji,Matsumoto Nobuhiro,Togo KanaeORCID,Yonemoto Naohiro,Ohki Emiko,Xu Linghua,Hasegawa Yoshiyuki,Inoue Hirofumi,Yamashita Sakiko,Miyazaki Taiga

Abstract

Abstract Purpose We generated methods for evaluating clinical outcomes including treatment response in oncology using the unstructured data from electronic health records (EHR) in Japanese language. Methods This retrospective analysis used medical record database and administrative data of University of Miyazaki Hospital in Japan of patients with lung/breast cancer. Treatment response (objective response [OR], stable disease [SD] or progressive disease [PD]) was adjudicated by two evaluators using clinicians’ progress notes, radiology reports and pathological reports of 15 patients with lung cancer (training data set). For assessing key terms to describe treatment response, natural language processing (NLP) rules were created from the texts identified by the evaluators and broken down by morphological analysis. The NLP rules were applied for assessing data of other 70 lung cancer and 30 breast cancer patients, who were not adjudicated, to examine if any difference in using key terms exist between these patients. Results A total of 2,039 records in progress notes, 131 in radiology reports and 60 in pathological reports of 15 patients, were adjudicated. Progress notes were the most common primary source data for treatment assessment (60.7%), wherein, the most common key terms with high sensitivity and specificity to describe OR were “reduction/shrink”, for SD were “(no) remarkable change/(no) aggravation)” and for PD were “(limited) effect” and “enlargement/grow”. These key terms were also found in other larger cohorts of 70 patients with lung cancer and 30 patients with breast cancer. Conclusion This study demonstrated that assessing response to anticancer therapy using Japanese EHRs is feasible by interpreting progress notes, radiology reports and Japanese key terms using NLP.

Funder

Pfizer Japan

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3