CO2 removal characteristics of a novel type of moss and its potential for urban green roof applications

Author:

Seo Ye-Bin,Dinh Trieu-Vuong,Kim Seungjae,Baek Da-Hyun,Jung Kweon,Kim Jo-ChunORCID

Abstract

AbstractThe feasibility of a novel type of moss (Parkortanso No. 1 synthesized from Racomitrium japonicum, Dozy and Molk) to capture CO2 in urban areas was demonstrated. The effects of light intensity (500, 1000, and 1500 µmol/m2.s), ambient temperature (10 °C, 25 °C, and 35 °C), age (1-year-old and 3 years old), and leaf color (bright and dark green) on the CO2 removal caused by the moss concerned were investigated. It was determined that stronger light intensity resulted in higher CO2 removal by the target moss. The moss showed the best CO2 capture at 25 °C, while the CO2-capturing capacities declined when the ambient temperatures were 10 °C and 35 °C. Three years old bright green moss was found to have higher CO2-capturing capacity than 1 year old. Similarly, bright green moss exhibited the best CO2 uptake out of the mosses concerned. The highest net CO2 emission of the moss was − 1.94 ± 0.72 kgCO2/m2.year, which was comparable to other moss and plant species. Consequently, the bright green and old Parkortanso No. 1 moss are recommended for a green roof application in terms of CO2 capture. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3