Correlation between air temperature and surface ozone in their extreme ranges in the greater Tokyo region

Author:

Yoshikado HiroshiORCID

Abstract

AbstractHigh-level ozone (O3) events observed around major urban regions in the middle latitudes are correlated with high temperatures (T-O3 correlation). Therefore, the effects of global warming on the future O3 levels are a matter of concern. The T-O3 correlation is caused by various physicochemical and meteorological processes, the importance of which can differ by region. This statistical analysis focused on the correlation in the extremely high ranges, because the lower ranges would only act as noise in elucidating the conditions at which high temperatures and high levels of O3 occur. This methodology was applied to the greater Tokyo region after 2001, where severe O3 events frequently occurred when the sea breeze system developed in summer. To select sample days for the analysis, this study set up twofold filtering: (1) a large threshold for midday sunshine duration and (2) a typical variation pattern to roughly judge sea breeze days, mostly essential weather pattern for high-level O3 events in the region. The most notable result was a decrease in O3 corresponding to the reduction in non-methane hydrocarbons (NMHC) from Period I (2001–2007) to Period III (2017–2019). As the NMHC rank reduced, the linear regression line for the T-O3 correlation shifted downward, but its slope (ppb/°C) remained around 10, except that temporary spikes in O3 levels and temperatures occurred at moderate NMHC levels. From an urban meteorological perspective, the wind speed in the mature stage of the sea breeze is the major factor behind the T-O3 correlation.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3