Spatiotemporal aerosol prediction model based on fusion of machine learning and spatial analysis

Author:

Lee Kwon-HoORCID,Pyo Seong-Hun,Wong Man Sing

Abstract

AbstractThis study examined long-term aerosol optical thickness (AOT) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify aerosol conditions on the Korean Peninsula. Time-series machine learning (ML) techniques and spatial interpolation methods were used to predict future aerosol trends. This investigation utilized AOT data from Terra MODIS and meteorological data from Automatic Weather System (AWS) in eight selected cities in Korea (Gangneung, Seoul, Busan, Wonju, Naju, Jeonju, Jeju, and Baengyeong) to assess atmospheric aerosols from 2000 to 2021. A machine-learning-based AOT prediction model was developed to forecast future AOT using long-term observations. The accuracy analysis of the AOT prediction results revealed mean absolute error of 0.152 ± 0.15, mean squared error of 0.048 ± 0.016, bias of 0.002 ± 0.011, and root mean squared error of 0.216 ± 0.038, which are deemed satisfactory. By employing spatial interpolation, gridded AOT values within the observation area were generated based on the ML prediction results. This study effectively integrated the ML model with point-measured data and spatial interpolation for an extensive analysis of regional AOT across the Korean Peninsula. These findings have substantial implications for regional air pollution policies because they provide spatiotemporal AOT predictions.

Funder

Ministry of Education

Publisher

Springer Science and Business Media LLC

Reference34 articles.

1. Ahsan, M. M., Mahmud, M. A. P., Saha, P. K., Gupta, K. D., & Siddique, Z. (2021). Effect of data scaling methods on machine learning algorithms and model performance. Technologies, 9(3), 52. https://doi.org/10.3390/technologies9030052

2. Bian, H., Chin, M., Rodriguez, J. M., Yu, H., Penner, J. E., & Strahan, S. (2009). Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity. Atmospheric Chemistry and Physics, 9(7), 2375–2386. https://doi.org/10.5194/acp-9-2375-2009

3. Chakraborty, S., Guan, B., Waliser, D. E., da Silva, A. M., Uluatam, S., & Hess, P. (2021). Extending the atmospheric river concept to aerosols: Climate and air quality impacts. Geophysical Research Letters, 48(GL091827), e2020. https://doi.org/10.1029/2020GL091827

4. Gassó, S., Hegg, D. A., Covert, D. S., Collins, D., Noone, K. J., Öström, E., Schmid, B., Russell, P. B., Livingston, J. M., Durkee, P. A., & Jonsson, H. (2000). Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2. Tellus b: Chemical and Physical Meteorology, 52(2), 546–567. https://doi.org/10.3402/tellusb.v52i2.16657

5. Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998). AERONET- A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1–16. https://doi.org/10.1016/S0034-4257(98)00031-5

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3