Hybrid Neural Network Models for Detecting Fake News Articles

Author:

Khalil Ashwaq,Jarrah MoathORCID,Aldwairi Monther

Abstract

AbstractThe prevalence of world-wide access to the Internet has come at a cost. A lot of misleading information is posted on public news websites and social media. Many news writers and organizations manipulate their posted data to propagate false information that target different societies and in different languages. Accurate and timely detection of false news is made possible in large part using machine learning-based technologies. This paper targets the problem of detecting fake news in Arabic language using machine learning models. A hybrid model of two deep neural networks is used to classify Arabic news articles in order to detect fake articles. The two types of neural networks are convolutional and bi-directional long-short term memory. Robust features are extracted using two different word vectors and a complex model of a convolutional neural network. Moreover, a set of auxiliary output layers are used to enhance the model accuracy. Multi-class classification is achieved via modifying the primary output layer. Results show an accuracy of 88% and 78% for binary classification and multi-class classification, respectively.

Funder

Deanship of Research, Jordan University of Science and Technology

Zayed University

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fake news detection: recent trends and challenges;Social Network Analysis and Mining;2024-08-30

2. Enhancing Arabic Fake News Detection: Evaluating Data Balancing Techniques Across Multiple Machine Learning Models;Engineering, Technology & Applied Science Research;2024-08-02

3. A Semi-Automated Solution Approach Recommender for a Given Use Case: a Case Study for AI/ML in Oncology via Scopus and OpenAI;Human-Centric Intelligent Systems;2024-05-15

4. Sentiment Analysis of Hacker Forums with Deep Learning to Predict Potential Cyberattacks;2024 15th Annual Undergraduate Research Conference on Applied Computing (URC);2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3