Application of Histopathology Image Analysis Using Deep Learning Networks

Author:

Hossain Md ShamimORCID,Armstrong Leisa J.,Cook David M.,Zaenker Pauline

Abstract

AbstractAs the rise in cancer cases, there is an increasing demand to develop accurate and rapid diagnostic tools for early intervention. Pathologists are looking to augment manual analysis with computer-based evaluation to develop more efficient cancer diagnostics reports. The processing of these reports from manual evaluation is time-consuming, where the pathologists focus on accurately segmenting individual cancer cells, a vital step in analysis. This paper describes the design and validation of an application which has been developed based on deep learning networks. The application includes a workflow of image pre-processing followed by synthetic image generation, which is crucial due to the lack of training data in pathology settings. The next steps are the segmentation of nuclei regions and overlapping nuclei splitting. An improved approach has been considered based on a cycle-consistent GAN network for synthetic image generation. The synthetic images were utilized in a modified U-net network. Accurately outlining the individual nucleus border assisted an automated system that split the nuclei cluster into the individual nucleus. The SSIM and PSNR values of synthetic images corresponding to original were 0.204 and 10.610. The DSC value of the network trained by the synthetic data was 0.984 which was higher than the network trained by original images (0.805). The developed application provided better individual nuclei segmentation performance, where the average accuracy of different group images was 0.97. This higher accuracy suggests the benefit of using synthetic images in a situation to avoid the scarcity of labeled histopathology images in deep networks.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3