Mechanisms and Constraints Underpinning Ethically Aligned Artificial Intelligence Systems: An Exploration of Key Performance Areas

Author:

Treacy StephenORCID

Abstract

AbstractThe unpredictability of artificial intelligence (AI) services and products pose major ethical concerns for multinational companies as evidenced by the prevalence of unfair, biased, and discriminate AI systems. Examples including Amazon’s recruiting tool, Facebook’s biased ads, and racially biased healthcare risk algorithms have raised fundamental questions about what these systems should be used for, the inherent risks they possess, and how they can be mitigated. Unfortunately, these failures not only serve to highlight the lack of regulation in AI development, but it also reveals how organisations are struggling to alleviate the dangers associated with this technology. We argue that to successfully implement ethical AI applications, developers need a deeper understanding of not only the implications of misuse, but also a grounded approach in their conception. Judgement studies were therefore conducted with experts from data science backgrounds who identified six performance areas, resulting in a theoretical framework for the development of ethically aligned AI systems. This framework also reveals that these performance areas require specific mechanisms which must be acted upon to ensure that an AI system implements and meets ethical requirements throughout its lifecycle. The findings also outline several constraints which present challenges in the manifestation of these elements. By implementing this framework, organisations can contribute to an elevated trust between technology and people resulting in significant implications for both IS research and practice. This framework will further allow organisations to take a positive and proactive approach in ensuring they are best prepared for the ethical implications associated with the development, deployment and use of AI systems.

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Agrawal A, Gans J, Goldfarb A. Prediction machines: the simple economics of artificial intelligence. Cambridge: Harvard Business Press; 2018.

2. Batista R, Villar O, Gonzalez H, Milian V. Cultural challenges of the malicious use of artificial intelligence in Latin American Regional Balance. Proceedings of the 2nd European Conference on the Impact of Artificial Intelligence and Robotics, ECIAIR. 2020. pp. 7–13.

3. Boison E, Tsao L. Money moves: following the money beyond the banking system. US Att’ys Bull. 2019;67:95.

4. Brundage M. Limitations and risks of machine ethics. J Exp Theor Artif Intell. 2014;26(3):355–72.

5. Cath C. Governing artificial intelligence: ethical, legal and technical opportunities and challenges. New York: The Royal Society Publishing; 2018.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Navigating the Landscape of AI Ethics and Responsibility;Progress in Artificial Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3