“Harnessing Customer Feedback for Product Recommendations: An Aspect-Level Sentiment Analysis Framework”

Author:

Yadav Nimesh BaliORCID

Abstract

AbstractThis research paper presents a novel approach for recommending products to customers based on their cared aspects by performing sentiment analysis on customer feedback. The proposed approach utilizes the WordNet database to identify and extract aspects from customer reviews and feedback, and then applies sentiment analysis techniques to determine the sentiment associated with each aspect. The resulting sentiment scores are then used to generate personalized product recommendations that align with the customer’s preferences and priorities. Here we extract the comments from an e-commerce website that is Amazon, and we then choose the most cared aspects from those comments. The dataset is publicly available online which contains reviews of each product. The chosen most cared aspects are price, colour, battery, and screen. These cared aspects are keywords that shopping online and recommending, will help to categorize the comments based on price, colour, battery, and screen. After categorizing the comments, it will be defined as the set of explicit comments. After an explicit comment set is defined, sentiment analysis is performed to systematically identify the interest of the customer through comments. Here the comments are classified into the polarity of given texts in an explicit comment set into positive, negative, and neutral. Finally, scores were calculated for all brands which will help to recommend the product.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3