A de Rham decomposition type theorem for contact sub-Riemannian manifolds

Author:

Grochowski MarekORCID

Abstract

AbstractIn this paper we prove a result which can be regarded as a sub-Riemannian version of de Rham decomposition theorem. More precisely, suppose that (MHg) is a contact and oriented sub-Riemannian manifold such that the Reeb vector field $$\xi $$ ξ is an infinitesimal isometry. Under such assumptions there exists a unique metric and torsion-free connection on H. Suppose that there exists a point $$q\in M$$ q M such that the holonomy group $$\Psi (q)$$ Ψ ( q ) acts reducibly on H(q) yielding a decomposition $$H(q) = H_1(q)\oplus \cdots \oplus H_m(q)$$ H ( q ) = H 1 ( q ) H m ( q ) into $$\Psi (q)$$ Ψ ( q ) -irreducible factors. Using parallel transport we obtain the decomposition $$H = H_1\oplus \cdots \oplus H_m$$ H = H 1 H m of H into sub-distributions $$H_i$$ H i . Unlike the Riemannian case, the distributions $$H_i$$ H i are not integrable, however they induce integrable distributions $$\Delta _i$$ Δ i on $$M/\xi $$ M / ξ , which is locally a smooth manifold. As a result, every point in M has a neighborhood U such that $$T(U/\xi )=\Delta _1\oplus \cdots \oplus \Delta _m$$ T ( U / ξ ) = Δ 1 Δ m , and the latter decomposition of $$T(U/\xi )$$ T ( U / ξ ) induces the decomposition of $$U/\xi $$ U / ξ into the product of Riemannian manifolds. One can restate this as follows: every contact sub-Riemannian manifold whose holonomy group acts reducibly has, at least locally, the structure of a fiber bundle over a product of Riemannian manifolds. We also give a version of the theorem for indefinite metrics.

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Algebra and Number Theory,Analysis

Reference16 articles.

1. Agrachev, A.A.: Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Syst. 2(3), 321–358 (1996)

2. Agrachev, A.A., Barilari, D.: Sub-Riemannian structures on 3D Lie groups. J. Dyn. Control Syst. 18(1), 21–44 (2012)

3. Agrachev, A. A., Barilari, D., Boscain, U.: Introduction to Riemannian and sub-Riemannian Geometry. Preprint SISSA 09/2012/M

4. Alekseevsky, D., Medvedev, A., Slovak, J.: Constant Curvature Models in sub-Riemannian Geometry. arXiv:1712.10278

5. Bellaïche, A.: The tangent space in sub-Riemannian geometry. Dynamical systems, 3. J. Math. Sci. (New York) 83(4), 461–476 (1997)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3