Author:
Dappiaggi Claudio,Rinaldi Paolo,Sclavi Federico
Abstract
AbstractWe develop a notion of wavefront set aimed at characterizing in Fourier space the directions along which a distribution behaves or not as an element of a specific Besov space. Subsequently we prove an alternative, albeit equivalent characterization of such wavefront set using the language of pseudodifferential operators. Both formulations are used to prove the main underlying structural properties. Among these we highlight the individuation of a sufficient criterion to multiply distributions with a prescribed Besov wavefront set which encompasses and generalizes the classical Young’s theorem. At last, as an application of this new framework we prove a theorem of propagation of singularities for a large class of hyperbolic operators.
Funder
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Algebra and Number Theory,Analysis
Reference29 articles.
1. Abels, H.: Pseudodifferential and Singular Integral Operators, p. 222. De Gruyter, Berlin (2012)
2. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, p. 523p. Springer, Berlin (2011)
3. Bonicelli, A., Dappiaggi, C., Rinaldi, P.: An algebraic and microlocal approach to the stochastic nonlinear Schrödinger equation. Ann. Henri Poincaré 24(7), 2443–2482 (2023)
4. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209 (1981)
5. Broux, L., Lee, D.: Besov Reconstruction. arXiv:2106.12528 [math.AP]