Abstract
AbstractThe collision of two plane gravitational waves in Einstein’s theory of relativity can be described mathematically by a Goursat problem for the hyperbolic Ernst equation in a triangular domain. We use the integrable structure of the Ernst equation to present the solution of this problem via the solution of a Riemann–Hilbert problem. The formulation of the Riemann–Hilbert problem involves only the prescribed boundary data, thus the solution is as effective as the solution of a pure initial value problem via the inverse scattering transform. Our results are valid also for boundary data whose derivatives are unbounded at the triangle’s corners—this level of generality is crucial for the application to colliding gravitational waves. Remarkably, for data with a singular behavior of the form relevant for gravitational waves, it turns out that the singular integral operator underlying the Riemann–Hilbert formalism can be explicitly inverted at the boundary. In this way, we are able to show exactly how the behavior of the given data at the origin transfers into a singular behavior of the solution near the boundary.
Funder
H2020 European Research Council
Vetenskapsrådet
Göran Gustafssons Stiftelse för Naturvetenskaplig och Medicinsk Forskning
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献