Abstract
AbstractIn this paper, we prove bilinear sparse domination bounds for a wide class of Fourier integral operators of general rank, as well as oscillatory integral operators associated to Hörmander symbol classes $$S^m_{\rho ,\delta }$$
S
ρ
,
δ
m
for all $$0\le \rho \le 1$$
0
≤
ρ
≤
1
and $$0\le \delta < 1$$
0
≤
δ
<
1
, a notable example is the Schrödinger operator. As a consequence, one obtains weak (1, 1) estimates, vector-valued estimates, and a wide range of weighted norm inequalities for these classes of operators.
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Beltran, D., Cladek, L.: Sparse bounds for pseudodifferential operators. J. Anal. Math. 140(1), 89–116 (2020)
2. Beltran, D., Roos, J., Seeger, A.: Multi-scale sparse domination. Mem. Am. Math. Soc. (2024)
3. Bergfeldt, A., Rodríguez-López, S., Staubach, W.: On weighted norm inequalities for oscillatory integral operators. Anal. Math. Phys. 12(6), 136 (2022)
4. Bernicot, F., Frey, D., Petermichl, S.: Sharp weighted norm estimates beyond Calderón–Zygmund theory. Anal. PDE 9(5), 1079–1113 (2016)
5. Castro, A.J., Israelsson, A., Staubach, W., Yerlanov, M.: Regularity properties of Schrödinger integral operators and general oscillatory integrals. arXiv:1912.08316 (2019)