Abstract
AbstractIn this article we will explore Dirichlet Laplace eigenvalues of balls with spherically symmetric metrics. We will compare any Dirichlet Laplace eigenvalue with the corresponding Dirichlet Laplace eigenvalue on balls in Euclidean space with the same radii. As a special case we shall show that the Dirichlet Laplace eigenvalues of balls with small radii on the sphere are smaller than the corresponding eigenvalues of the Euclidean balls with the same radii. The opposite correspondence is true for the Dirichlet Laplace eigenvalues of hyperbolic spaces.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Algebra and Number Theory,Analysis
Reference12 articles.
1. Artamoshin, S.: Lower bounds for the first Dirichlet eigenvalue of the Laplacian for domains in hyperbolic space. Math. Proc. Camb. Philos. Soc. 160(2), 1–18 (2016)
2. Baginski, F.E.: Upper and lower bounds for eigenvalues of the Laplacian on a spherical cap. Q. Appl. Math. 48(3), 569573 (1990)
3. Baginski, F.E.: Errata: upper and lower bounds for eigenvalues of the Laplacian on a spherical cap. Q. Appl. Math. 49(2), 399 (1991)
4. Borisov, D., Freitas, P.: The spectrum of geodesic balls on spherically symmetric manifolds. Commun. Anal. Geom. 25(3), 507–544 (2017)
5. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, New York (1984). (Including a chapter by B. Randol, With an appendix by J. Dodziuk.)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献