Author:
Arya Vedansh,Kumar Dharmendra
Abstract
AbstractIn this note, we establish a new Carleman estimate with singular weights for the sub-Laplacian on a Carnot group $$\mathbb G$$
G
for functions satisfying the discrepancy assumption in (2.16) below. We use such an estimate to derive a sharp vanishing order estimate for solutions to stationary Schrödinger equations.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Algebra and Number Theory,Analysis
Reference29 articles.
1. Almgren, F.: Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. In: Minimal Submanifolds and Geodesics (Proc. Japan-United States Sem., Tokyo, 1977), pp. 1-6. North-Holland, Amsterdam (1979)
2. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9) 36, 235–249 (1957)
3. Aronszajn, N., Krzywicki, A., Szarski, J.: A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark. Mat. 4(1962), 417–453 (1962)
4. Bahouri, H.: Non prolongement unique des solutions d’opérateurs “somme de carrés” (French) [Failure of unique continuation for “sum of squares” operators]. Ann. Inst. Fourier (Grenoble) 36, 137–155 (1986)
5. Bakri, L.: Quantitative uniqueness for Schrödinger operator. Indiana Univ. Math. J. 61(4), 1565–1580 (2012)