Estimates for the lowest Neumann eigenvalues of parallelograms and domains of constant width

Author:

Léna Corentin,Rohleder Jonathan

Abstract

AbstractWe prove sharp upper bounds for the first and second non-trivial eigenvalues of the Neumann Laplacian in two classes of domains: parallelograms and domains of constant width. This gives in particular a new proof of an isoperimetric inequality for parallelograms recently obtained by A. Henrot, A. Lemenant and I. Lucardesi.

Funder

Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni

Sweden Research Council

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Reference15 articles.

1. Antunes, P.R.S., Henrot, A.: On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467, 1577–1603 (2011)

2. Burenkov, V.I., Lamberti, P.D., Lanza de Cristoforis, M.: Spectral stability of non-negative selfadjoint operators (Russian). Sovrem. Mat. Fundam. Napravl. 15, 76–111 (2006). (English translation in: Journal of Mathematical Sciences 149 , 1417–1452 (2008))

3. Gol’dshtein, V., Ukhlov, A.: Composition operators on Sobolev spaces and Neumann eigenvalues. Complex Anal. Oper. Theory 13(6), 2781–2798 (2019)

4. Gol’dshtein, V., Pchelintsev, V., Ukhlov, A.: Spectral stability estimates of Neumann divergence form elliptic operators. Math. Rep. (Bucur.) 73(1–2), 132–147 (2021)

5. Henrot, A., Lemenant, A., Lucardesi, I.: An isoperimetric problem with two distinct solutions, Trans. Am. Math. Soc., to appear, arXiv:2210.17225

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3