Introduction to coherent quantization

Author:

Neumaier ArnoldORCID,Farashahi Arash Ghaani

Abstract

AbstractThis paper studies coherent quantization, the way operators in the quantum space of a coherent space—defined in the recent book ’Coherent Quantum Mechanics’ by the first author—can be studied in terms of objects defined directly on the coherent space. The results may be viewed as a generalization of geometric quantization, including the non-unitary case. Care has been taken to work with the weakest meaningful topology and to assume as little as possible about the spaces and groups involved. Unlike in geometric quantization, the groups are not assumed to be compact, locally compact, or finite-dimensional. This implies that the setting can be successfully applied to quantum field theory, where the groups involved satisfy none of these properties. The paper characterizes linear operators acting on the quantum space of a coherent space in terms of their coherent matrix elements. Coherent maps and associated symmetry groups for coherent spaces are introduced, and formulas are derived for the quantization of coherent maps. The importance of coherent maps for quantum mechanics is due to the fact that there is a quantization map that associates homomorphically with every coherent map a linear operator from the quantum space into itself. The quantization map generalizes the second quantization procedure for free classical fields to symmetry groups of general coherent spaces. Field quantization is obtained by specialization to Klauder spaces, whose quantum spaces are the bosonic Fock spaces. Implied by the new approach is a short, coordinate-free derivation of all basic properties of creation and annihilation operators in Fock spaces.

Funder

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Algebra and Number Theory,Analysis

Reference36 articles.

1. Lecture Notes in Mathematics;JP Antoine,2009

2. Baez, J.C., Segal, I.E., Zhou, Z.: Introduction to Algebraic and Constructive Quantum Field Theory. Princeton University Press, Princeton (2014)

3. Bar-Moshe, D., Marinov, M.S.: Realization of compact Lie algebras in Kähler manifolds. J. Phys. A Math. Gen. 27, 6287–6298 (1994)

4. Bar-Moshe, D., Marinov, M.S.: Berezin quantization and unitary representations of Lie groups. Manuscript (1994). arXiv:hep-th/9407093

5. Bates, S., Weinstein, A.: Lectures on the Geometry of Quantization, Berkeley Mathematics Lecture Notes, vol. 8. American Mathematical Society, Providence (1997)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harmonic analysis of covariant functions of characters of normal subgroups;Proceedings of the American Mathematical Society;2023-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3