Abstract
AbstractIn the setting of higher-dimensional anisotropic Heisenberg group, we compute the fundamental solution for the sub-Laplacian, and we prove Poincaré and $$\beta $$
β
-Logarithmic Sobolev inequalities for measures as a function of this fundamental solution.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Algebra and Number Theory,Analysis
Reference37 articles.
1. Bakry, D., Baudoin, F., Bonnefont, M., Chafai, D.: On gradient bounds for the heat kernel on the Heisenberg group. J. Funct. Anal. 255, 1905–1938 (2008)
2. Balogh, Z., Tyson, J.: Polar coordinates in Carnot groups. Math. Z. 241(4), 697–730 (2002)
3. Beals, R., Gaveau, B., Greiner, P.: The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes. Adv. Math. 121, 288–345 (1996)
4. Bieske, T.: On the Lie algebra of polarizable Carnot groups. Anal. Math. Phys. 10, 80 (2020)
5. Bobkov, S., Zegarliński, B.: Entropy bounds and isoperimetry. Mem. Am. Math. Soc. 176(829), 1–67 (2005)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献