Abstract
AbstractWe consider a parametric nonlinear Robin problem driven by the negative p-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation $$f(z,\cdot )$$
f
(
z
,
·
)
is $$(p-1)$$
(
p
-
1
)
-sublinear and then the case where it is $$(p-1)$$
(
p
-
1
)
-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter $$\lambda \in {\mathbb {R}}$$
λ
∈
R
which we specify exactly in terms of principal eigenvalue of the differential operator.
Funder
Università degli Studi di Palermo
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Algebra and Number Theory,Analysis
Reference20 articles.
1. Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. Mem. Amer. Math. Soc. 196(915) (2008). 70 pp
2. Allegretto, W., Huang, Y.X.: A Picone’s identity for the $$p$$-Laplacian and applications. Nonlinear Anal. 32(7), 819–830 (1998)
3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
4. Brezis, H., Nirenberg, L.: $$H^1$$ versus $$C^1$$ local minimizers. C. R. Acad. Sci. Paris, Sér. I Math. 317(5), 465–472 (1993)
5. Filippakis, M.E., Papageorgiou, N.S.: Multiple constant sign and nodal solutions for nonlinear elliptic equations with the $$p$$-Laplacian. J. Differ. Equ. 245(7), 1883–1922 (2008)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献