Half-waves and spectral Riesz means on the 3-torus

Author:

Fairchild Elliott,Sussman EthanORCID

Abstract

AbstractFor a full rank lattice $$\Lambda \subset \mathbb {R}^d$$ Λ R d and $$\textbf{A}\in \mathbb {R}^d$$ A R d , consider $$N_{d,0;\Lambda ,\textbf{A}}(\Sigma ) = \# ([\Lambda +\textbf{A}] \cap \Sigma \mathbb {B}^d) = \# \{\textbf{k}\in \Lambda : |\textbf{k}+\textbf{A}| \le \Sigma \}$$ N d , 0 ; Λ , A ( Σ ) = # ( [ Λ + A ] Σ B d ) = # { k Λ : | k + A | Σ } . Consider the iterated integrals $$\begin{aligned} N_{d,k+1;\Lambda ,\textbf{A}}(\Sigma ) = \int _0^\Sigma N_{d,k;\Lambda ,\textbf{A}}(\sigma ) \,\textrm{d}\sigma , \end{aligned}$$ N d , k + 1 ; Λ , A ( Σ ) = 0 Σ N d , k ; Λ , A ( σ ) d σ , for $$k\in \mathbb {N}$$ k N . After an elementary derivation via the Poisson summation formula of the sharp large-$$\Sigma $$ Σ asymptotics of $$N_{3,k;\Lambda ,\textbf{A}}(\Sigma )$$ N 3 , k ; Λ , A ( Σ ) for $$k\ge 2$$ k 2 (these having an $$O(\Sigma )$$ O ( Σ ) error term), we discuss how they are encoded in the structure of the Fourier transform $$\mathcal {F}N_{3,k;\Lambda ,\textbf{A}}(\tau )$$ F N 3 , k ; Λ , A ( τ ) . The analysis is related to Hörmander’s analysis of spectral Riesz means, as the iterated integrals above are weighted spectral Riesz means for the simplest magnetic Schrödinger operator on the flat d-torus. That the $$N_{3,k;\Lambda ,\textbf{A}}(\Sigma )$$ N 3 , k ; Λ , A ( Σ ) obey an asymptotic expansion to $$O(\Sigma ^2)$$ O ( Σ 2 ) is a special case of a general result holding for all magnetic Schrödinger operators on all manifolds, and the subleading polynomial corrections can be identified in terms of the Laurent series of the half-wave trace at $$\tau =0$$ τ = 0 . The improvement to $$O(\Sigma )$$ O ( Σ ) for $$k\ge 2$$ k 2 follows from a bound on the growth rate of the half-wave trace at late times.

Funder

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Algebra and Number Theory,Analysis

Reference30 articles.

1. Ivić, A. et al.: Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic. (2004). arXiv:math.NT/0410522 [math.NT] (cit. on p.1)

2. Heath-Brown, D.: Lattice points in the sphere”. In: Number Theory in Progress. Ed. by K. Györy, H. Iwaniec, and J. Urbanowicz. De Gruyter, (1999) 883–892. https://doi.org/10.1515/9783110285581.883. url: https://ora.ox.ac.uk/objects/uuid:4b17126d-c3a0-4827-8fa2-0ad82872d17e (cit. on p.1)

3. Chamizo, F., Iwaniec, H.: On the sphere problem. Rev. Mat. Iberoamericana 11(2), 417–429 (1995). https://doi.org/10.4171/rmi/178 (cit. on pp. 1, 6, 7)

4. Chen, J.-R.: Improvement on the asymptotic formulas for the number of lattice points in a region of three dimensions (II). Sci. Sinica 12(5), 739–741 (1963) (cit. on p. 1)

5. Vinogradov, I.M.: On the number of integer points in a sphere. Izv. Ross. Akad. Nauk Ser. Mat. 27.5, 957–968 (1963) (cit. on p.1)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3