Abstract
AbstractFor a full rank lattice $$\Lambda \subset \mathbb {R}^d$$
Λ
⊂
R
d
and $$\textbf{A}\in \mathbb {R}^d$$
A
∈
R
d
, consider $$N_{d,0;\Lambda ,\textbf{A}}(\Sigma ) = \# ([\Lambda +\textbf{A}] \cap \Sigma \mathbb {B}^d) = \# \{\textbf{k}\in \Lambda : |\textbf{k}+\textbf{A}| \le \Sigma \}$$
N
d
,
0
;
Λ
,
A
(
Σ
)
=
#
(
[
Λ
+
A
]
∩
Σ
B
d
)
=
#
{
k
∈
Λ
:
|
k
+
A
|
≤
Σ
}
. Consider the iterated integrals $$\begin{aligned} N_{d,k+1;\Lambda ,\textbf{A}}(\Sigma ) = \int _0^\Sigma N_{d,k;\Lambda ,\textbf{A}}(\sigma ) \,\textrm{d}\sigma , \end{aligned}$$
N
d
,
k
+
1
;
Λ
,
A
(
Σ
)
=
∫
0
Σ
N
d
,
k
;
Λ
,
A
(
σ
)
d
σ
,
for $$k\in \mathbb {N}$$
k
∈
N
. After an elementary derivation via the Poisson summation formula of the sharp large-$$\Sigma $$
Σ
asymptotics of $$N_{3,k;\Lambda ,\textbf{A}}(\Sigma )$$
N
3
,
k
;
Λ
,
A
(
Σ
)
for $$k\ge 2$$
k
≥
2
(these having an $$O(\Sigma )$$
O
(
Σ
)
error term), we discuss how they are encoded in the structure of the Fourier transform $$\mathcal {F}N_{3,k;\Lambda ,\textbf{A}}(\tau )$$
F
N
3
,
k
;
Λ
,
A
(
τ
)
. The analysis is related to Hörmander’s analysis of spectral Riesz means, as the iterated integrals above are weighted spectral Riesz means for the simplest magnetic Schrödinger operator on the flat d-torus. That the $$N_{3,k;\Lambda ,\textbf{A}}(\Sigma )$$
N
3
,
k
;
Λ
,
A
(
Σ
)
obey an asymptotic expansion to $$O(\Sigma ^2)$$
O
(
Σ
2
)
is a special case of a general result holding for all magnetic Schrödinger operators on all manifolds, and the subleading polynomial corrections can be identified in terms of the Laurent series of the half-wave trace at $$\tau =0$$
τ
=
0
. The improvement to $$O(\Sigma )$$
O
(
Σ
)
for $$k\ge 2$$
k
≥
2
follows from a bound on the growth rate of the half-wave trace at late times.
Funder
Massachusetts Institute of Technology
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Algebra and Number Theory,Analysis
Reference30 articles.
1. Ivić, A. et al.: Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic. (2004). arXiv:math.NT/0410522 [math.NT] (cit. on p.1)
2. Heath-Brown, D.: Lattice points in the sphere”. In: Number Theory in Progress. Ed. by K. Györy, H. Iwaniec, and J. Urbanowicz. De Gruyter, (1999) 883–892. https://doi.org/10.1515/9783110285581.883. url: https://ora.ox.ac.uk/objects/uuid:4b17126d-c3a0-4827-8fa2-0ad82872d17e (cit. on p.1)
3. Chamizo, F., Iwaniec, H.: On the sphere problem. Rev. Mat. Iberoamericana 11(2), 417–429 (1995). https://doi.org/10.4171/rmi/178 (cit. on pp. 1, 6, 7)
4. Chen, J.-R.: Improvement on the asymptotic formulas for the number of lattice points in a region of three dimensions (II). Sci. Sinica 12(5), 739–741 (1963) (cit. on p. 1)
5. Vinogradov, I.M.: On the number of integer points in a sphere. Izv. Ross. Akad. Nauk Ser. Mat. 27.5, 957–968 (1963) (cit. on p.1)