Abstract
Abstract
We analyze the spectral properties of a d-dimensional HyperCubic (HC) lattice model originally introduced by Parisi. The U(1) gauge links of this model give rise to a magnetic flux of constant magnitude ϕ but random orientation through the faces of the hypercube. The HC model, which also can be written as a model of 2d interacting Majorana fermions, has a spectral flow that is reminiscent of Maldacena-Qi (MQ) model, and its spectrum at ϕ = 0, actually coincides with the coupling term of the MQ model. As was already shown by Parisi, at leading order in 1/d, the spectral density of this model is given by the density function of the Q-Hermite polynomials, which is also the spectral density of the double-scaled Sachdev-Ye-Kitaev model. Parisi demonstrated this by mapping the moments of the HC model to Q-weighted sums on chord diagrams. We point out that the subleading moments of the HC model can also be mapped to weighted sums on chord diagrams, in a manner that descends from the leading moments. The HC model has a magnetic inversion symmetry that depends on both the magnitude and the orientation of the magnetic flux through the faces of the hypercube. The spectrum for fixed quantum number of this symmetry exhibits a transition from regular spectra at ϕ = 0 to chaotic spectra with spectral statistics given by the Gaussian Unitary Ensembles (GUE) for larger values of ϕ. For small magnetic flux, the ground state is gapped and is close to a Thermofield Double (TFD) state.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference70 articles.
1. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
2. A. Kitaev, A simple model of quantum holography, talk given at the Entanglement in Strongly-Correlated Quantum Matter, Santa Barbara, California, U.S.A., 6 April–2 July 2015 and online at http://online.kitp.ucsb.edu/online/entangled15/.
3. K. Mon and J.B. French, Statistical Properties of Many Particle Spectra, Annals Phys. 95 (1975) 90 [INSPIRE].
4. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey and S.S.M. Wong, Random matrix physics: Spectrum and strength fluctuations, Rev. Mod. Phys. 53 (1981) 385 [INSPIRE].
5. L. Benet and H.A. Weidenmüller, Review of the k-body embedded ensembles of Gaussian random matrices, J. Phys. A 36 (2003) 3569 [cond-mat/0207656] [INSPIRE].
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献