The correspondence between rotating black holes and fundamental strings

Author:

Čeplak NejcORCID,Emparan RobertoORCID,Puhm Andrea,Tomašević MarijaORCID

Abstract

Abstract The correspondence principle between strings and black holes is a general framework for matching black holes and massive states of fundamental strings at a point where their physical properties (such as mass, entropy and temperature) smoothly agree with each other. This correspondence becomes puzzling when attempting to include rotation: At large enough spins, there exist degenerate string states that seemingly cannot be matched to any black hole. Conversely, there exist black holes with arbitrarily large spins that cannot correspond to any single-string state. We discuss in detail the properties of both types of objects and find that a correspondence that resolves the puzzles is possible by adding dynamical features and non-stationary configurations to the picture. Our scheme incorporates all black hole and string phases as part of the correspondence, save for one outlier which remains enigmatic: the near-extremal Kerr black hole. Along the way, we elaborate on general aspects of the correspondence that have not been emphasized before.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gravitational index of the heterotic string;Journal of High Energy Physics;2024-09-09

2. Chaotic and thermal aspects in the highly excited string S-matrix;Journal of High Energy Physics;2024-08-23

3. Quantum charged black holes;Journal of High Energy Physics;2024-08-22

4. Self gravitating spinning string condensates;Journal of High Energy Physics;2024-07-24

5. Veneziano and Shapiro-Virasoro amplitudes of arbitrarily excited strings;Journal of High Energy Physics;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3