Evolution of magnetic fields from the 3 + 1 dimensional self-similar and Gubser flows in ideal relativistic magnetohydrodynamics

Author:

Shokri M.,Sadooghi N.

Abstract

Abstract Motivated by the recently found realization of the 1 + 1 dimensional Bjorken flow in ideal and nonideal relativistic magnetohydrodynamics (MHD), we use appropriate symmetry arguments, and determine the evolution of magnetic fields arising from the 3 + 1 dimensional self-similar and Gubser flows in an infinitely conductive relativistic fluid (ideal MHD). In the case of the 3 + 1 dimensional self-similar flow, we arrive at a family of solutions, that are related through a differential equation arising from the corresponding Euler equation. To find the magnetic field evolution from the Gubser flow, we solve the MHD equations of a stationary fluid in a conformally flat dS 3 × E 1 spacetime. The results are then Weyl transformed back into the Minkowski spacetime. In this case, the temporal evolution of the resulting magnetic field is shown to exhibit a transition between an early time 1/t decay to a 1/t 3 decay at a late time. Here, t is the time coordinate. Transverse and longitudinal components of the magnetic fields arising from these flows are also found. The latter turns out to be sensitive to the transverse size of the fluid. In contrast to the result arising from the Gubser flow, the radial domain of validity of the magnetic field arising from the self-similar flow is highly restricted. A comparison of the results suggests that the (conformal) Gubser MHD may give a more appropriate qualitative picture of the magnetic field decay in the plasma of quarks and gluons created in heavy ion collisions.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3