Abstract
Abstract
In this paper, we study a class of heterotic Landau-Ginzburg models. We show that the action can be written as a sum of BRST-exact and non-exact terms. The non-exact terms involve the pullback of the complexified Kähler form to the worldsheet and terms arising from the superpotential, which is a Grassmann-odd holomorphic function of the superfields. We then demonstrate that the action is invariant on-shell under supersymmetry transformations up to a total derivative. Finally, we extend the analysis to the case in which the superpotential is not holomorphic. In this case, we find that supersymmetry imposes a constraint which relates the nonholomorphic parameters of the superpotential to the Hermitian curvature. Various special cases of this constraint have previously been used to establish properties of Mathai-Quillen form analogues which arise in the corresponding heterotic Landau-Ginzburg models. There, it was claimed that supersymmetry imposes those constraints. Our goal in this paper is to support that claim. The analysis for the nonholomorphic case also reveals a constraint imposed by supersymmetry that we did not anticipate from studies of Mathai-Quillen form analogues.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献