Author:
Grignani Gianluca,Semenoff Gordon W.
Abstract
Abstract
We study a class of defect quantum field theories where the quantum field theory in the 3+1-dimensional bulk is a free photon and charged matter and the interactions of the photons with the charges occur entirely on a 2+1-dimensional defect. We observe that at the fully quantum level, the effective action of such a theory is still a defect field theory with free photons propagating in the bulk and the nonlinearities in the quantum corrections to the Maxwell equations confined to the defect. We use this observation to show that the defect field theory has interesting electromagnetic properties. The electromagnetic fields sourced by static test charges are attenuated as if the bulk surrounding them were filled with a dielectric material. This is particularly interesting when the observer and test charge are on opposite sides of the defect. Then the effect is isotropic and it is operative even in the region near the defect. If the defect is in a time reversal violating state, image charges have the appearance of electrically and magnetically charged dyons. We present the example of a single layer in a quantum Hall state. We observe that the charge screening effect in charge neutral graphene should be significant, and even more dramatic when the layer is in a metallic state with mobile electrons.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献