Abstract
Abstract
If holography is an equivalence between quantum theories, one might expect it to be described by a map that is a bijective isometry between bulk and boundary Hilbert spaces, preserving the hamiltonian and symmetries. Holography has been believed to be a property of gravitational (or string) theories, but not of non-gravitational theories; specifically Marolf has argued that it originates from the gauge symmetries and constraints of gravity. These observations suggest study of the assumed holographic map as a function of the gravitational coupling G. The zero coupling limit gives ordinary quantum field theory, and is therefore not necessarily expected to be holographic. This, and the structure of gravity at non-zero G, raises important questions about the full map. In particular, construction of a holographic map appears to require as input a solution of the nonperturbative analog of the bulk gravitational constraints, that is, the unitary bulk evolution. Moreover, examination of the candidate boundary algebra, including the boundary hamiltonian, reveals commutators that don’t close in the usual fashion expected for a boundary theory.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference36 articles.
1. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
2. D. Marolf, Unitarity and holography in gravitational physics, Phys. Rev. D 79 (2009) 044010 [arXiv:0808.2842] [INSPIRE].
3. D. Marolf, Holographic thought experiments, Phys. Rev. D 79 (2009) 024029 [arXiv:0808.2845] [INSPIRE].
4. D. Marolf, Holography without strings?, Class. Quant. Grav. 31 (2014) 015008 [arXiv:1308.1977] [INSPIRE].
5. T. Jacobson, Boundary unitarity and the black hole information paradox, Int. J. Mod. Phys. D 22 (2013) 1342002 [arXiv:1212.6944] [INSPIRE].
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献