Abstract
Abstract
We revisit the dynamical generation of an arbitrarily small neutrino Yukawa coupling in the Standard Model with trans-Planckian asymptotic safety and apply the same mechanism to the gauged B − L model. We show that thanks to the presence of additional irrelevant couplings, the described neutrino-mass generation in the B − L model is potentially more in line with existing theoretical calculations in quantum gravity. Interestingly, the model can accommodate, in full naturalness and without extensions, the possibility of purely Dirac, pseudo-Dirac, and Majorana neutrinos with any see-saw scale. We investigate eventual distinctive signatures of these cases in the detection of gravitational waves from first-order phase transitions. We find that, while it is easy to produce a signal observable in new-generation space interferometers, its discriminating features are washed out by the strong dependence of the gravitational-wave spectrum on the relevant parameters of the scalar potential.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference165 articles.
1. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
2. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
3. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
4. S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].
5. R.N. Mohapatra and G. Senjanovic, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献