Author:
Beuria Jyotiranjan,Datta AseshKrishna
Abstract
Abstract
We study the possibilities and the implications of a spontaneous breakdown of charge in the MSSM and in the Z
3-symmetric NMSSM. The breakdown is triggered by the charged states of the Higgs doublets acquiring vacuum expectation values. In the MSSM, it is known that the presence of a charge conserving minimum for the tree-level Higgs potential precludes a deeper (global) charge-breaking minimum. We find that the inclusion of radiative correction to the potential does not alter the situation while a deeper charge-conserving minimum could arise, albeit with no major practical consequences. In the NMSSM scenario, a charge-breaking global minimum, with or without an accompanying charge-conserving deeper minimum, could appear even with the tree-level Higgs potential thanks to the presence of a charge-neutral scalar state which transforms as a singlet under the Standard Model gauge group. Use of the NMSSM Higgs potential that includes both quantum and thermal corrections and the requirement of a viable (stable or long-lived) vacuum that breaks the electroweak symmetry, along with its compatibility with the latest Higgs data, lead to nontrivial constraints on the NMSSM parameter space.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献