No asymptotic acceleration without higher-dimensional de Sitter vacua

Author:

Hebecker Arthur,Schreyer Simon,Venken GerbenORCID

Abstract

Abstract There has recently been considerable interest in the question whether and under which conditions accelerated cosmological expansion can arise in the asymptotic regions of field space of a d-dimensional EFT. We conjecture that such acceleration is impossible unless there exist metastable de Sitter vacua in more than d dimensions. That is, we conjecture that ‘Asymptotic Acceleration Implies de Sitter’ (AA⇒DS). Phrased negatively, we argue that the d-dimensional ‘No Asymptotic Acceleration’ conjecture (a.k.a. the ‘strong asymptotic dS conjecture’) follows from the de Sitter conjecture in more than d dimensions. The key idea is that the relevant field-space asymptotics almost always correspond to decompactification and that the only positive energy contribution which decays sufficiently slowly in this regime is the vacuum energy of a higher-dimensional metastable vacuum. This result is in agreement with recent Swampland bounds on the potential in the asymptotics in field space from e.g. the species bound, but is significantly more constraining. We further note that for our asymptotic decompactification limits based on higher-dimensional de Sitter, the Kaluza-Klein scale always falls below the Hubble scale asymptotically. In fact, this occurs whenever $$ \left|{V}^{\prime}\right|/V\le 2\sqrt{\left(d+k-2\right)/k\left(d-2\right)} $$ V / V 2 d + k 2 / k d 2 asymptotically, with k the number of decompactifying internal directions. This is steeper than what is needed for accelerated expansion.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. No accelerating scaling cosmologies at string tree level?;Journal of Cosmology and Astroparticle Physics;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3