Mapping relativistic to ultra/non-relativistic conformal symmetries in 2D and finite $$ \sqrt{T\overline{T}} $$ deformations

Author:

Rodríguez Pablo,Tempo DavidORCID,Troncoso Ricardo

Abstract

Abstract The conformal symmetry algebra in 2D (Diff(S1)⊕Diff(S1)) is shown to be related to its ultra/non-relativistic version (BMS3≈GCA2) through a nonlinear map of the generators, without any sort of limiting process. For a generic classical CFT2, the BMS3 generators then emerge as composites built out from the chiral (holomorphic) components of the stress-energy tensor, T and $$ \overline{T} $$ T ¯ , closing in the Poisson brackets at equal time slices. Nevertheless, supertranslation generators do not span Noetherian symmetries. BMS3 becomes a bona fide symmetry once the CFT2 is marginally deformed by the addition of a $$ \sqrt{T\overline{T}} $$ T T ¯ term to the Hamiltonian. The generic deformed theory is manifestly invariant under diffeomorphisms and local scalings, but it is no longer a CFT2 because its energy and momentum densities fulfill the BMS3 algebra. The deformation can also be described through the original CFT2 on a curved metric whose Beltrami differentials are determined by the variation of the deformed Hamiltonian with respect to T and $$ \overline{T} $$ T ¯ . BMS3 symmetries then arise from deformed conformal Killing equations, corresponding to diffeomorphisms that preserve the deformed metric and stress-energy tensor up to local scalings. As an example, we briefly address the deformation of N free bosons, which coincides with ultra-relativistic limits only for N = 1. Furthermore, Cardy formula and the S-modular transformation of the torus become mapped to their corresponding BMS3 (or flat) versions.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3